# **COMUNICACIÓN 13**

# **ESTUDIO COMPARATIVO** DE LA METODOLOGÍA DE COMPACTACIÓN **GIRATORIA-IMPACTO, PARTE IV**

**JAVIER LOMA** Y ROCÍO CERVANTES ASFALTOS Y CONSTRUCCIONES ELSAN

**MARISOL BARRAL** Y RAMÓN ROMERA **ASFALTOS CAMPEZO** 

MARÍA ELENA HIDALGO, **FRANCISCO SERRANO** Y FERNANDO BRAVO **EIFFAGE INFRAESTRUCTURAS** 

**JOSÉ BERBIS** Y JESÚS FELIPO PAVASAL

**ELENA SAEZ** ACCIONA

MARISA CARMONA **INTROMAC** 

**SANTIAGO GIL** Y FRANCISCO JAVIER SUÁREZ DITECPESA

**JOSÉ MANUEL BERENGUER** LOS SERRANO

**ANTONIO GARCÍA PROAS** 

**EMILIO MORENO** REPSOL

**DANIEL ANDALUZ** Y FERNANDO VALOR CIESM-INTEVIA

JOSÉ ANTONIO SOTO. **XAVIER AGULLO** Y PEDRO VERGEL SORIGUE

**JOSÉ LUIS LÚCIA** SACYR

**CARLOS ROYO MECACISA** 

**JOSE LUIS PEÑA** Y JUAN JOSÉ POTTI ASEFMA

# ESTUDIO COMPARATIVO DE LA METODOLOGÍA DE COMPACTACIÓN GIRATORIA-IMPACTO, PARTE IV

#### **RESUMEN**

on la aparición de las nuevas normas de ensayo de la serie UNE-EN 12697, disponemos de diferentes procedimientos para la fabricar probetas de mezclas bituminosas: con el equipo de impacto, con la máquina giratoria, con el compactador vibratorio y con el equipo de rodillo, las tres primeras de probetas cilíndricas.

Toda la experiencia acumulada en España para la compactación de las probetas cilíndricas de mezclas bituminosas se ha desarrollado con el equipo de impacto (antigua compactadora Marshall), ya sea para determinar su densidad y los huecos como para realizar otros ensayos de caracterización, como son la rotura Marshall, rotura por tracción indirecta o determinación de la rigidez.

Dentro de la Agrupación de Laboratorios de Asefma, ALEAS, se está trabajando para determinar una energía (giros o golpes) equivalente entre ambos sistemas de compactación. En las Jornadas de Asefma de 2010 y 2011 se presentaron comunicaciones libres con los resultados obtenidos en los estudios realizados con las mezclas tipo AC16, AC22 y AC32. En la comunicación que se presenta en esta jornada se muestran los resultados obtenidos en el estudio para las mezclas tipo BBTM11B y SMA11.

Todos los resultados que se han venido obteniendo se han comprobado en diferentes laboratorios durante el control de producción en planta. En esta comunicación se indican los resultados que se han obtenido hasta la fecha en este trabajo.

# **INTRODUCCIÓN**

La normativa de ensayos europea para mezclas bituminosas, serie UNE-EN 12697, permite compactar las probetas con 4 procedimientos diferentes. Uno de estos procedimientos es la compactación con rodillo (UNE-EN12697-33) para fabricar probetas prismáticas y los otros tres procedimientos se utilizan para fabricar probetas cilíndricas: compactación por impacto (UNE-EN 12697-30), máquina giratoria (UNE-EN 12697-31) y equipo vibratorio (UNE-EN 12697-32).

En uno de los grupos de trabajo de Asefma se inició un estudio para establecer las energías equivalentes entre la compactación con el equipo de impacto, de uso generalizado en España, y la compactación con la máquina giratoria, con la finalidad de determinar las energías equivalentes para alcanzar la misma densidad y poder introducir esta metodología en el desarrollo de los trabajos de laboratorio en los laboratorios en España.

Se ha estudiado la equivalencia para la familia de mezclas tipo AC, pertenecientes a la norma UNE-EN 13108-1, resultados que han sido presentados en anteriores jornadas nacionales de Asefma (años 2010 y 2011). El trabajo descrito en esta comunicación se ha centrado en dos familias de

mezclas diferentes, tipo BBTM y SMA, ambas empleadas como capas de rodadura.

Han participado 14 laboratorios, utilizando equipos de compactación de diferente marca y modelo, lo que ha requerido previamente un ensayo de intercomparación anillo inicial para la verificación de los compactadores.

#### **OBJETIVO**

El principal objetivo del trabajo es determinar la equivalencia entre las energías de compactación de impacto y giratoria para las mezclas tipo BBTM11B y/o SMA11. Se efectúan ensayos con diferentes grados de energía y se mide su resistencia a tracción indirecta, valorando también sus propiedades con ambos sistemas de compactación.

Para corroborar los resultados que se vienen obteniendo en este trabajo, se realizan comprobaciones con mezcla fabricada a escala industrial en diferentes laboratorios y plantas de fabricación de mezclas bituminosas con distinta ubicación en el territorio nacional y con materiales de diferente naturaleza y tipo.

### **METODOLOGIA DEL TRABAJO**

La sistemática empleada en este trabajo es similar a la utilizada en los estudios anteriores. Se realiza un primer ensayo de referencia con el compactador de impacto, que para las mezclas BBTM y SMA le corresponden 50 golpes por cara, y con el compactador giratorio aplicando 210 giros. De esta manera se han seleccionado los grados de energía adecuados con el compactador giratorio para alcanzar una densidad similar a la obtenida por impacto y comprobando estos datos con varias series de probetas.

Al aumentar el número de participantes, respecto a los estudios efectuados anteriormente, antes de comenzar con los trabajos de compactación se realiza un ensayo de verificación de los equipos utilizados en todos los laboratorios, requiriendo en algunos casos efectuar ajustes en los equipos. La metodología del estudio es la siguiente:

# i. Estudio intercomparativo de contraste de equipos.

Para asegurar el correcto estado de funcionamiento de los equipos empleados en el trabajo por todos los laboratorios.

# ii. Definición y selección de las mezclas objeto de estudio

### iii. Definición de un protocolo de trabajo:

Establecer las pautas a seguir por todos los laboratorios participantes, pudiendo tener condiciones de reproducibilidad en los resultados obtenidos.

#### iv. Trabajos de laboratorio:

Ejecución de los ensayos atendiendo a las condiciones establecidas en las fases anteriores.

### v. Análisis y estudio de resultados:

Los resultados obtenidos por cada uno de los laboratorios se compilaron y analizaron con objeto de establecer correlaciones entre los diferentes métodos, así como estudios complementarios.

# ESTUDIO INTERCOMPARATIVO DE CONTRASTE DE LOS EQUIPOS

Este apartado tiene como objeto verificar el correcto estado de todos los equipos empleados por todos los participantes mediante el ensayo de un mismo tipo de mezcla y analizando los resultados obtenidos.

El número de laboratorios participantes en este trabajo es de 14, utilizando 4 modelos distintos de compactadores de impacto y 5 de compactadores giratorios.

Se fabrican 2 series de probetas con ambos compactadores con una energía de 75 golpes por cada cara (impacto) y 100 giros (giratoria), determinando la densidad por el procedimiento geométrico y por superficie seca saturada.

Para este ensayo intercomparativo se ha tomado como referencia una muestra tipo AC16D fabri-

cada en la planta de EIFFAGE con árido de naturaleza pórfido y ligante B50/70. Los datos de composición son los siguientes:

Tabla 1: Datos de la mezcla AC16D para contraste de los equipos.

| Mezcla               | AC16D                  |
|----------------------|------------------------|
| Fabricante           | Eiffage (Madrid)       |
| Naturaleza del árido | Pórfido                |
| Tipo de betún        | B50/70                 |
| Densidad máxima      | 2505 kg/m <sup>3</sup> |
| Ligante en mezcla    | 4,80 %                 |
| Relación f/b         | 1,34                   |

Los resultados obtenidos para la densidad geométrica y por superficie saturada seca (kg/m³) obtenidos son los siguientes:

Tabla 2: Resultados densidades del contraste impacto (75go)-giratoria (100 gi)mezcla AC16D.

| Laboratorio | IMPACTO,75 golpes/cara |        | GIRATORIA, 1 | 100 giros |
|-------------|------------------------|--------|--------------|-----------|
|             | Geométrica             | S.S.D. | Geométrica   | S.S.D.    |
| 1           | 2364                   | 2400   | 2397         | 2448      |
| 2           | 2461                   | 2486   | 2435         | 2482      |
| 3           | 2409                   | 2467   | 2436         | 2497      |
| 4           | 2384                   | 2389   | 2387         | 2413      |
| 5           | 2425                   | 2456   | 2392         | 2437      |
| 6           | 2459                   | 2467   | 2432         | 2457      |
| 7           | 2432                   | 2472   | 2386         | 2459      |
| 8           | 2454                   | 2465   | 2430         | 2466      |
| 9           | 2410                   | 2458   | 2399         | 2458      |
| 10          | 2408                   | 2464   | 2420         | 2466      |
| 11          | 2435                   | 2454   | 2410         | 2461      |
| 12          | 2436                   | 2478   | 2332         | 2425      |
| 13          | 2436                   | 2452   | 2364         | 2486      |
| 14          | 2471                   | 2481   | 2430         | 2478      |

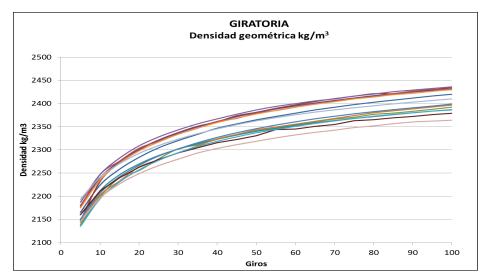



Gráfico 1: Curvas de compactación de la mezcla AC16D con 201 giros.

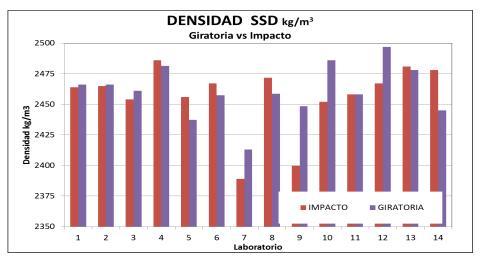



Gráfico 2: Gráfico comparativo densidades SSD impacto-giratoria.

|             |                  |          | _    | •    |            |            |
|-------------|------------------|----------|------|------|------------|------------|
| Compactador | Método medida    | Promedio | Max. | Min. | Diferencia | Desv. Est. |
| Impacto     | Geométrico       | 2427     | 2471 | 2364 | 108        | 30,3       |
|             | S. seca saturada | 2456     | 2486 | 2389 | 97         | 28,2       |
|             |                  |          |      |      |            |            |
| Giratoria   | Geométrico       | 2407     | 2436 | 2364 | 72         | 23,7       |

2497

2413

2461

Tabla 3: Resumen de resultados impacto-giratoria para la mezcla AC16D.

El cuadro final de resultados de la densidad en kg/m<sup>3</sup> es el reflejado en la tabla 3.

S. seca saturada

# **DEFINICIÓN Y SELECCIÓN DE LAS MEZCLAS**

Se han seleccionado dos tipos de mezclas empleadas como capas de rodadura con granulometría de áridos de tipo discontinuo y diferente contenido de huecos. Una de estas mezclas corresponde a la denominación BBTM11B, según la norma UNE-EN 13108-2, siendo la mezcla con el contenido de huecos mayor (en torno al 14 %). La otra mezcla ensa-

Tabla 4: Composición y características de las mezclas BBTM11B y SMA11.

| Mezcla                 | SMA11           | BBTM11B            |
|------------------------|-----------------|--------------------|
| Fabricante             | Elsan (Madrid)  | Pavasal (Valencia) |
| Naturaleza del árido   | Milonita-caliza | Cuarcita-caliza    |
| Tipo de betún          | PMB45/80-65     | PMB45/80-65        |
| Densidad máxima, kg/m³ | 2469            | 2465               |
| Ligante en mezcla, %   | 6,10            | 5,20               |
| Relación f/b           | 1,23            | 1,07               |

yada corresponde a la denominación SMA11 según la norma UNE-EN 13108-5, para un contenido de huecos inferior, comprendido entre el 4 y el 6 %.

21,5

84

La composición y características de cada una de las mezclas ensayadas se indican en la tabla 4 y en el gráfico 3.

La mezcla BBTM11B se ajusta a los requisitos señalados en el Artículo 543 del Pliego General de Condiciones PG-3. La mezcla SMA11 no se encuentra en la actualidad recogida en los Artículos de mezclas bituminosas del PG-3 por lo que ha sido diseñada de acuerdo con los requisitos que aparecen en la normativa europea UNE-EN 13108-5.

### **DEFINICIÓN DE UN PROTOCOLO DE TRABAJO**

Previamente a la realización de los ensayos en el laboratorio se confeccionó un protocolo de trabajos para todos los laboratorios, indicando las condiciones de acondicionamiento de la mezcla, com-

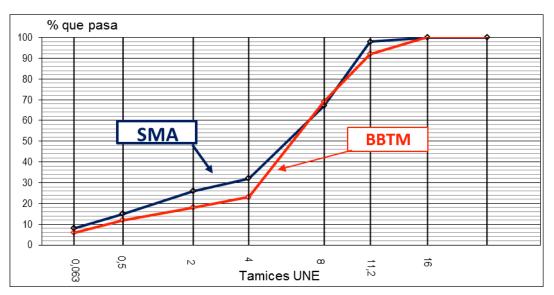



Gráfico 3: Curvas granulométricas de las mezclas BBTM11B y SMA11 estudiadas.

pactación, ensayo de las probetas y registro de los resultados, con el siguiente contenido:

- Determinación de la composición de la mezcla, curva granulométrica de áridos y contenido de ligante, y densidad máxima de cada tipo de mezcla.
- Definición de las operaciones de fabricación de las probetas en cuanto a tiempos y temperaturas de trabajo.
- Definición de la cantidad de muestra a utilizar en la preparación de probetas compactadas tanto por impacto como por giratoria. Para el caso de la compactación con la máquina giratoria, la cantidad de muestra se determinó para una relación entre la altura mínima y el diámetro interior del molde comprendida entre 0,66 a 1,05 teniendo en cuenta la densidad máxima de la mezcla, siendo la misma cantidad en todos los laboratorios para cada tipo de mezcla.
- Preparación de probetas aplicando 50 golpes por impacto calculando las densidades tanto por el método geométrico para la mezcla BBTM11B y por superficie saturada seca y geométrico para la mezcla SMA11, así como el cálculo del porcentaje de huecos.
- Preparación de probetas por compactación giratoria aplicando diferentes números de giros: barrido inicial de densidades para una energía de 210 giros y posterior fabricación de series de probetas de comprobación a diferente número de giros: SMA11 a 80, 100 y 120 giros y BBTM11B a 100, 120 y 160 giros. Ambos tipos de mezclas se fabrican en moldes con diámetro de 100.
- Determinación de la resistencia a tracción indirecta a 15°C en seco (UNE-EN 12697-23) de cada una de las probetas, para comprobar los resultados que se obtienen con ambos sistemas de compactación.

#### TRABAJOS DE LABORATORIO

# FABRICACIÓN DE PROBETAS CON EL MÉTODO DE IMPACTO, UNE-EN 12697-30

Se fabrican probetas de cada tipo de mezcla con el método de compactación por impacto aplicando una energía de 50 golpes por cada cara, determinando la densidad por el procedimiento geométrico y por superficie seca saturada (este último método solamente para la mezcla SMA11).

Los resultados de las densidades (kg/m³) obtenidas en los ensayos son los siguientes:

Tabla 5: Resultados densidades con el compactador de impacto 50 golpes/cara.

| TIPO        | MEZCLA SI  | ИА 11 | MEZCLA BBTM 11B |
|-------------|------------|-------|-----------------|
| LABORATORIO | GEOMÉTRICA | SSD   | GEOMÉTRICA      |
| 1           | 2325       | 2403  |                 |
| 2           | 2386       | 2382  | 2162            |
| 3           | 2325       | 2404  | 2186            |
| 4           | 2368       | 2426  | 2206            |
| 5           | 2254       | 2360  | 2079            |
| 6           | 2344       | 2412  | 2173            |
| 7           | 2244       | 2348  | 2070            |
| 8           | 2317       | 2407  | 2154            |
| 9           | 2279       | 2399  | 2057            |
| 10          | 2277       | 2363  | 2202            |
| 11          | 2332       | 2407  | 2094            |
| 12          | 2340       | 2421  | 2085            |
| 13          | 2322       | 2408  | 2183            |
| 14          | 2335       | 2418  | 2108            |

El promedio de las densidades calculadas con todas las probetas fabricadas para cada tipo de mezcla es la que aparece en la siguiente tabla.

Tabla 6: Promedios densidades impacto para las mezclas BBTM11B y SMA11 estudiadas.

| Tipo de mezcla | Promedio densidad, kg/m³ |                          |  |  |  |
|----------------|--------------------------|--------------------------|--|--|--|
| Tipo de mezcia | Geométrica               | Superficie seca saturada |  |  |  |
| BBTM11B        | 2135                     |                          |  |  |  |
| SMA11          | 2318                     | 2397                     |  |  |  |

# FABRICACIÓN DE PROBETAS CON EL COMPACTADOR GIRATORIO, UNE-EN 12697-31

En una primera fase del trabajo se fabrican probetas con 210 giros para obtener las curvas de densidad en todos los laboratorios participantes en el trabajo y establecer los niveles adecuados para alcanzar la energía de referencia obtenida con las probetas fabricadas con impacto.

Los resultados obtenidos se muestran a continuación:

Tabla 7: Densidades de la mezcla SMA11 con el compactador giratorio a 210 giros (1).

# RESULTADOS MEZCLA SMA11.

| LABORATORIO   | 1                          | 2    | 3    | 4    | 5    | 6    | 7    |  |
|---------------|----------------------------|------|------|------|------|------|------|--|
| GIROS         | DENSIDAD GEOMÉTRICA, kg/m³ |      |      |      |      |      |      |  |
| 5             | 1997                       | 2041 | 2005 | 2025 | 1964 | 2077 | 2037 |  |
| 10            | 2068                       | 2106 | 2062 | 2108 | 2026 | 2138 | 2096 |  |
| 20            | 2144                       | 2165 | 2125 | 2183 | 2092 | 2207 | 2159 |  |
| 30            | 2189                       | 2201 | 2162 | 2223 | 2135 | 2248 | 2197 |  |
| 40            | 2220                       | 2229 | 2189 | 2250 | 2155 | 2277 | 2224 |  |
| 50            | 2242                       | 2252 | 2209 | 2271 | 2174 | 2299 | 2244 |  |
| 60            | 2260                       | 2267 | 2225 | 2285 | 2193 | 2315 | 2260 |  |
| 70            | 2276                       | 2280 | 2239 | 2299 | 2202 | 2329 | 2272 |  |
| 80            | 2289                       | 2290 | 2249 | 2310 | 2211 | 2341 | 2283 |  |
| 90            | 2302                       | 2299 | 2259 | 2320 | 2219 | 2351 | 2292 |  |
| 100           | 2313                       | 2307 | 2269 | 2327 | 2228 | 2359 | 2301 |  |
| 110           | 2322                       | 2315 | 2276 | 2335 | 2235 | 2366 | 2307 |  |
| 120           | 2330                       | 2320 | 2282 | 2339 | 2242 | 2373 | 2313 |  |
| 130           | 2336                       | 2326 | 2288 | 2346 | 2248 | 2379 | 2319 |  |
| 140           | 2342                       | 2330 | 2294 | 2348 | 2252 | 2384 | 2324 |  |
| 150           | 2346                       | 2335 | 2298 | 2353 | 2256 | 2388 | 2329 |  |
| 160           | 2350                       | 2339 | 2303 | 2358 | 2261 | 2392 | 2333 |  |
| 170           | 2353                       | 2342 | 2307 | 2360 | 2263 | 2396 | 2337 |  |
| 180           | 2357                       | 2346 | 2310 | 2365 | 2266 | 2400 | 2340 |  |
| 190           | 2360                       | 2350 | 2314 | 2367 | 2269 | 2403 | 2344 |  |
| 200           | 2364                       | 2353 | 2317 | 2372 | 2272 | 2406 | 2347 |  |
| 210           | 2368                       | 2356 | 2319 | 2374 | 2274 | 2408 | 2350 |  |
| D. GEOMETRICA | 2368                       | 2356 | 2319 | 2374 | 2274 | 2408 | 2350 |  |
| D. SSD        | 2438                       | 2406 | 2415 | 2442 | 2376 | 2435 | 2412 |  |

Tabla 8: Densidades de la mezcla SMA11 con el compactador giratorio a 210 giros (2).

| LABORATORIO   | 8    | 9      | 10     | 11      | 12                    | 13   | 14   |
|---------------|------|--------|--------|---------|-----------------------|------|------|
| GIROS         |      | DENSIC | AD GEO | OMETRIC | CA, kg/m <sup>3</sup> | 3    |      |
| 5             | 2027 | 2028   | 2080   | 1981    | 2084                  | 2024 | 2064 |
| 10            | 2088 | 2099   | 2149   | 2051    | 2146                  | 2090 | 2113 |
| 20            | 2152 | 2174   | 2215   | 2120    | 2213                  | 2162 | 2181 |
| 30            | 2188 | 2210   | 2254   | 2166    | 2255                  | 2199 | 2205 |
| 40            | 2213 | 2246   | 2280   | 2193    | 2282                  | 2233 | 2229 |
| 50            | 2232 | 2269   | 2300   | 2217    | 2302                  | 2254 | 2247 |
| 60            | 2247 | 2284   | 2317   | 2234    | 2317                  | 2267 | 2262 |
| 70            | 2259 | 2299   | 2331   | 2249    | 2329                  | 2282 | 2275 |
| 80            | 2269 | 2314   | 2341   | 2265    | 2338                  | 2300 | 2284 |
| 90            | 2279 | 2324   | 2351   | 2278    | 2348                  | 2306 | 2293 |
| 100           | 2286 | 2334   | 2359   | 2286    | 2355                  | 2320 | 2301 |
| 110           | 2293 | 2339   | 2366   | 2289    | 2361                  | 2325 | 2305 |
| 120           | 2299 | 2345   | 2373   | 2300    | 2365                  | 2334 | 2309 |
| 130           | 2305 | 2351   | 2379   | 2305    | 2371                  | 2341 | 2317 |
| 140           | 2310 | 2357   | 2384   | 2311    | 2374                  | 2349 | 2323 |
| 150           | 2315 | 2362   | 2389   | 2316    | 2378                  | 2355 | 2328 |
| 160           | 2319 | 2368   | 2394   | 2325    | 2381                  | 2358 | 2327 |
| 170           | 2323 | 2372   | 2397   | 2329    | 2385                  | 2367 | 2337 |
| 180           | 2327 | 2376   | 2401   | 2332    | 2388                  | 2373 | 2339 |
| 190           | 2329 | 2379   | 2403   | 2336    | 2388                  | 2374 | 2342 |
| 200           | 2333 | 2383   | 2407   | 2341    | 2392                  | 2375 | 2345 |
| 210           | 2336 | 2385   | 2409   | 2345    | 2393                  | 2376 | 2348 |
| D. GEOMETRICA | 2336 | 2385   | 2409   | 2345    | 2393                  | 2376 | 2348 |
| D. SSD        | 2433 | 2444   | 2448   | 2414    | 2431                  | 2441 | 2426 |

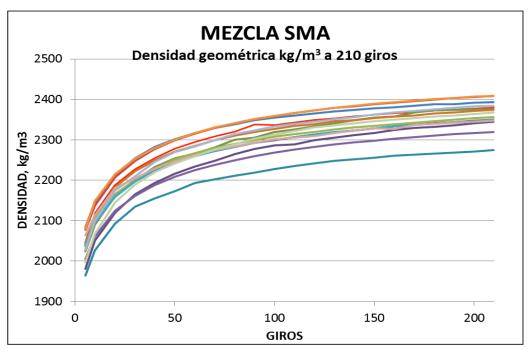



Gráfico 4. Curvas de compactación de la mezcla SMA11 a 210 giros.

Tabla 9: Densidades de la mezcla BBTM11B con el compactador giratorio a 210 giros (1).

| LABORATORIO   | 2    | 3        | 4     | 6        | 7     | 8    |
|---------------|------|----------|-------|----------|-------|------|
| GIROS         |      | DENSIDAD | GEOME | TRICA, I | kg/m³ |      |
| 5             | 1842 | 1876     | 1875  | 1914     | 1868  | 1872 |
| 10            | 1897 | 1923     | 1945  | 1966     | 1913  | 1930 |
| 20            | 1955 | 1977     | 2008  | 2023     | 1962  | 1990 |
| 30            | 1990 | 2009     | 2043  | 2057     | 1992  | 2024 |
| 40            | 2013 | 2031     | 2069  | 2081     | 2014  | 2048 |
| 50            | 2032 | 2048     | 2086  | 2100     | 2030  | 2066 |
| 60            | 2048 | 2063     | 2100  | 2114     | 2044  | 2080 |
| 70            | 2060 | 2075     | 2110  | 2125     | 2055  | 2091 |
| 80            | 2071 | 2085     | 2122  | 2135     | 2064  | 2100 |
| 90            | 2080 | 2094     | 2129  | 2144     | 2072  | 2109 |
| 100           | 2088 | 2102     | 2138  | 2151     | 2078  | 2116 |
| 110           | 2095 | 2108     | 2143  | 2157     | 2084  | 2122 |
| 120           | 2101 | 2114     | 2149  | 2163     | 2089  | 2127 |
| 130           | 2107 | 2119     | 2154  | 2168     | 2094  | 2132 |
| 140           | 2112 | 2124     | 2158  | 2173     | 2098  | 2136 |
| 150           | 2117 | 2129     | 2163  | 2177     | 2103  | 2140 |
| 160           | 2121 | 2133     | 2167  | 2181     | 2107  | 2144 |
| 170           | 2124 | 2136     | 2171  | 2185     | 2110  | 2147 |
| 180           | 2128 | 2139     | 2173  | 2188     | 2113  | 2150 |
| 190           | 2131 | 2142     | 2177  | 2191     | 2115  | 2153 |
| 200           | 2134 | 2145     | 2179  | 2195     | 2118  | 2156 |
| 210           | 2137 | 2148     | 2182  | 2197     | 2121  | 2158 |
| D. GEOMETRICA | 2137 | 2148     | 2182  | 2197     | 2121  | 2158 |

Tabla 10: Densidades de la mezcla BBTM11B con el compactador giratorio a 210 giros (2).

| LABORATORIO   | 9    | 10    | 11      | 12      | 13       | 14   |
|---------------|------|-------|---------|---------|----------|------|
| GIROS         |      | DENSI | DAD GEO | MÉTRICA | A, kg/m³ |      |
| 5             | 1800 | 1916  | 1850    | 1889    | 1890     | 1855 |
| 10            | 1856 | 1967  | 1895    | 1942    | 1945     | 1894 |
| 20            | 1918 | 2022  | 1942    | 1999    | 2006     | 1947 |
| 30            | 1949 | 2056  | 1974    | 2033    | 2038     | 1964 |
| 40            | 1980 | 2078  | 1989    | 2056    | 2066     | 1987 |
| 50            | 2000 | 2094  | 2003    | 2073    | 2085     | 2003 |
| 60            | 2014 | 2109  | 2019    | 2085    | 2094     | 2014 |
| 70            | 2027 | 2119  | 2026    | 2096    | 2107     | 2022 |
| 80            | 2041 | 2128  | 2033    | 2107    | 2123     | 2031 |
| 90            | 2050 | 2136  | 2045    | 2114    | 2127     | 2037 |
| 100           | 2060 | 2142  | 2046    | 2121    | 2140     | 2045 |
| 110           | 2066 | 2148  | 2056    | 2127    | 2144     | 2047 |
| 120           | 2072 | 2153  | 2061    | 2132    | 2151     | 2050 |
| 130           | 2078 | 2156  | 2063    | 2137    | 2157     | 2053 |
| 140           | 2084 | 2162  | 2067    | 2142    | 2163     | 2060 |
| 150           | 2090 | 2165  | 2073    | 2145    | 2169     | 2065 |
| 160           | 2096 | 2168  | 2071    | 2149    | 2170     | 2068 |
| 170           | 2100 | 2171  | 2079    | 2151    | 2179     | 2071 |
| 180           | 2103 | 2175  | 2083    | 2155    | 2184     | 2073 |
| 190           | 2107 | 2178  | 2086    | 2158    | 2186     | 2076 |
| 200           | 2111 | 2180  | 2082    | 2161    | 2186     | 2079 |
| 210           | 2115 | 2183  | 2084    | 2163    | 2187     | 2081 |
| D. GEOMETRICA | 2115 | 2183  | 2084    | 2163    | 2187     | 2081 |

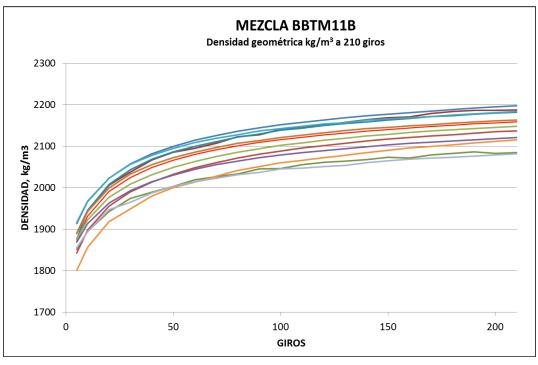



Gráfico 5. Curvas de compactación de la mezcla BBTM11B a 210 giros.

#### ESTUDIO COMPARATIVO DE LA METODOLOGÍA DE COMPACTACIÓN GIRATORIA-IMPACTO, PARTE IV

A continuación se muestran dos tablas comparativas con los valores obtenidos en las densidades por impacto con 50 golpes por cada cara y los obtenidos con la giratoria para 210 giros.

Tabla 11: Resultados mezcla SMA11 impacto (50 golpes/cara) y giratoria (210 giros).

Mezcla SMA11.

| Compactador | Método medida               | Promedio | Max. | Min. | Diferencia | Desviación<br>Estándar |
|-------------|-----------------------------|----------|------|------|------------|------------------------|
|             |                             |          |      |      |            |                        |
| Impacto     | Geométrico                  | 2318     | 2386 | 2244 | 142        | 44,6                   |
|             | Superficie seca saturada    | 2397     | 2426 | 2348 | 78         | 26                     |
|             |                             |          |      |      |            |                        |
| Giratoria   | Geométrico                  | 2360     | 2409 | 2274 | 135        | 36,2                   |
|             | Superficie seca<br>saturada | 2426     | 2448 | 2376 | 72         | 19,5                   |

Tabla 12: Resultados mezcla BBTM11B impacto (50 golpes/cara) y giratoria (210 giros).

#### Mezcla BBTM11B.

| Compactador | Método medida | Promedio | Max. | Min. | Diferencia | Desviación<br>Estándar |
|-------------|---------------|----------|------|------|------------|------------------------|
| Impacto     | Geométrico    | 2134     | 2206 | 2057 | 150        | 55,8                   |
| Giratoria   | Geométrico    | 2145     | 2197 | 2081 | 116        | 39,45                  |

A partir de estos resultados se establecen los rangos de niveles de energía teóricos con la compactadora giratoria necesarios para alcanzar la densidad obtenida por el sistema de impacto, y que son los siguientes:

Mezcla SMA11B: entre 70 y 120 giros. Mezcla BBTM11B: entre 100 y 170 giros

De cada una de las mezclas se fabrican nuevas series de probetas para confirmar los giros necesarios en cada caso, dentro del rango establecido anteriormente y teniendo en cuenta los resultados obtenidos así como las categorías definidas en la norma UNE-EN 13108-20. Para la mezcla SMA11 se fabrican 3 series de probetas a 80, 100 y 120 giros y de la mezcla BBTM11B se fabrican 3 series de probetas con 100, 120 y 160 giros. Los resultados obtenidos se muestran a continuación:

Tabla 13: Resultados mezcla SMA11 con giratoria a 80-100-120 giros.

### Mezcla SMA11.

| Laboratorio | 80 giros   | 3    | 100 giro   | s    | 120 giro   | s    |
|-------------|------------|------|------------|------|------------|------|
|             | Geométrica | SSD  | Geométrica | SSD  | Geométrica | SSD  |
| 1           | 2296       | 2419 | 2302       | 2425 | 2335       | 2435 |
| 2           | 2325       | 2422 | 2329       | 2425 | 2337       | 2430 |
| 3           | 2272       | 2409 | 2273       | 2405 | 2280       | 2408 |
| 4           | 2338       | 2428 | 2329       | 2425 | 2337       | 2430 |
| 5           | 2294       | 2399 | 2300       | 2398 | 2324       | 2409 |
| 6           | 2345       | 2424 | 2332       | 2422 | 2334       | 2425 |
| 7           | 2267       | 2375 | 2314       | 2390 | 2327       | 2389 |
| 8           | 2333       | 2429 | 2345       | 2429 | 2339       | 2430 |
| 9           | 2399       | 2431 | 2279       | 2399 | 2279       | 2399 |
| 10          | 2313       | 2420 | 2310       | 2401 | 2339       | 2417 |
| 11          | 2277       | 2387 | 2318       | 2415 | 2334       | 2420 |
| 12          | 2338       | 2416 | 2372       | 2422 | 2388       | 2420 |
| 13          | 2292       | 2408 | 2326       | 2428 | 2337       | 2436 |
| 14          | 2287       | 2405 | 2316       | 2408 | 2309       | 2408 |
| Promedio    | 2313       | 2412 | 2317       | 2414 | 2329       | 2418 |

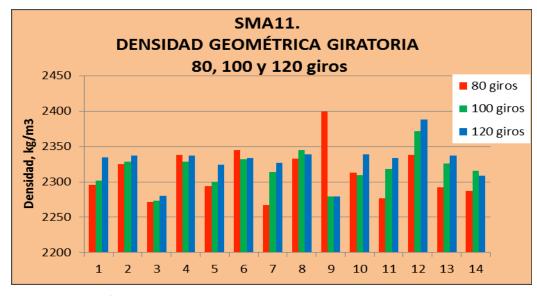



Gráfico 6. Densidades mezcla SMA11 compactador giratorio 80-100-120 giros.

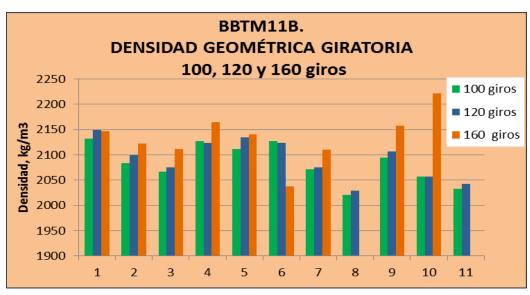



Gráfico 7. Densidades mezcla BBTM11B compactador giratorio 100-120-160 giros.

Tabla 14: Resultados mezcla BBTM11B con giratoria a 100-120-160 giros.

Mezcla BBTM11B.

| Laboratorio | 100 giros           | 120 giros | 160 giros |  |  |  |
|-------------|---------------------|-----------|-----------|--|--|--|
|             | Densidad geométrica |           |           |  |  |  |
| 2           | 2127                | 2124      | 2038      |  |  |  |
| 3           | 2071                | 2075      | 2110      |  |  |  |
| 4           | 2127                | 2124      | 2165      |  |  |  |
| 7           | 2020                | 2029      |           |  |  |  |
| 8           | 2132                | 2149      | 2147      |  |  |  |
| 9           | 2057                | 2057      | 2221      |  |  |  |
| 10          | 2094                | 2107      | 2158      |  |  |  |
| 11          | 2067                | 2075      | 2112      |  |  |  |
| 12          | 2111                | 2135      | 2141      |  |  |  |
| 13          | 2084                | 2100      | 2122      |  |  |  |
| 14          | 2033                | 2043      |           |  |  |  |
| Promedio    | 2084                | 2092      | 2135      |  |  |  |

A partir de los resultados obtenidos la energía equivalente entre el compactador de impacto para 50 golpes/cara y el compactador giratorio en las mezclas SMA11 y BBTM11B son los reflejados en la tabla siguiente:

Tabla 15: Resultados impacto 50 giros y giros.

|                   | SMA11          | BBTM11B        |
|-------------------|----------------|----------------|
| Energía impacto   | 50 golpes/cara | 50 golpes/cara |
| Energía giratoria | 100 giros      | 160 giros      |

# RESISTENCIA A TRACCIÓN INDIRECTA DE LAS PROBETAS FABRICADAS CON IMPACTO Y GIRATORIA

Los resultados de los ensayos de rotura a tracción indirecta (UNE-EN 12697-23) a una temperatura de 15 °C y efectuados sobre probetas con el método de impacto con 50 golpes y las probetas fabricadas con la máquina giratoria, con distintos niveles de energía, son los que se muestran en la siguiente tabla de resultados:

Tabla 16: Resultados tracción indirecta impacto y giratoria.

MEZCLA SMA11, resistencia a tracción indirecta en MPa.

| Laboratorio | Impacto   | Giratoria |          |           |           |  |
|-------------|-----------|-----------|----------|-----------|-----------|--|
|             | 50 golpes | 210 giros | 80 giros | 100 giros | 120 giros |  |
| 1           | 2,230     | 2,420     | 2,510    | 2,630     | 2,690     |  |
| 2           | 2,260     | 2,250     | 2,380    | 3,100     | 3,320     |  |
| 3           | 2,240     | 2,460     | 2,140    | 2,040     | 2,020     |  |
| 4           | 2,968     | 2,368     | 2,543    | 2,752     | 3,098     |  |
| 5           | 2,110     | 2,177     | 2,553    | 2,589     | 2,756     |  |
| 6           | 2,321     | 2,351     | 2,238    | 2,230     | 2,346     |  |
| 7           | 2,050     | 2,180     | 2,117    | 2,100     | 2,177     |  |
| 8           | 2,400     | 2,600     | 2,500    | 2,390     | 2,550     |  |
| 9           | 2,301     | 2,866     | 2,214    | 2,160     | 2,407     |  |
| 10          | 2,354     | 2,614     | 2,408    | 2,840     | 3,023     |  |
| 11          | 2,151     | 2,118     | 2,410    |           |           |  |
| 12          |           |           | 2,380    | 2,450     | 2,470     |  |
| 13          | 2,445     | 2,659     | 2,740    | 2,394     | 2,564     |  |
| 14          | 2,537     | 2,719     | 2,379    | 2,476     | 2,636     |  |
| Promedio    | 2,319     | 2,422     | 2,395    | 2,473     | 2,618     |  |

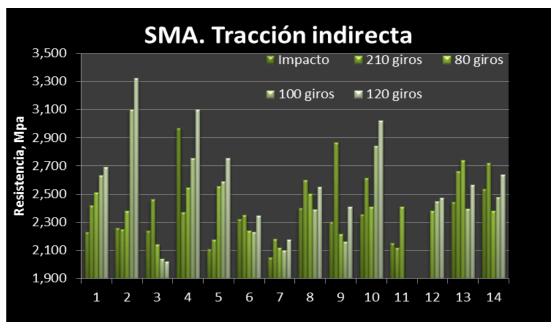



Gráfico 8. Tracción indirecta SMA11.

Tabla 17: Resultados tracción indirecta impacto y giratoria.

| MEZCLA BBTM11B resistencia a tracción indirecta | ta en M | Pa |
|-------------------------------------------------|---------|----|
|-------------------------------------------------|---------|----|

| Laboratorio | Impacto   | Giratoria |           |           |           |  |
|-------------|-----------|-----------|-----------|-----------|-----------|--|
|             | 50 golpes | 210 giros | 100 giros | 120 giros | 160 giros |  |
| 1           |           |           |           |           |           |  |
| 2           | 1,410     | 2,020     | 1,740     | 1,880     | 1,140     |  |
| 3           | 1,360     | 1,550     | 1,100     | 1,070     | 1,360     |  |
| 4           | 2,324     | 2,053     | 1,869     | 1,863     | 1,814     |  |
| 5           | 1,210     | 1,231     |           |           |           |  |
| 6           | 1,710     | 1,599     |           |           |           |  |
| 7           | 1,590     | 1,440     | 1,271     | 1,233     |           |  |
| 8           | 1,900     | 1,600     | 1,430     | 1,420     | 1,468     |  |
| 9           | 1,741     | 1,795     | 1,544     | 1,648     | 1,822     |  |
| 10          | 1,884     | 1,636     | 1,431     | 1,386     | 1,519     |  |
| 11          | 1,326     | 1,298     |           |           | 1,630     |  |
| 12          |           |           | 1,410     | 1,510     | 1,700     |  |
| 13          | 1,796     | 1,759     | 1,464     | 1,441     | 1,710     |  |
| 14          |           | 1,562     | 1,613     | 1,473     |           |  |
| Promedio    | 1,659     | 1,629     | 1,487     | 1,492     | 1,574     |  |



Gráfico 9. Tracción indirecta BBTM11B.

# **ANÁLISIS Y ESTUDIO DE RESULTADOS**

Una vez concluida la fase de laboratorio, se efectúan otros análisis de los resultados obtenidos durante todo el estudio, como por ejemplo el cálculo de la compactibilidad de cada tipo de mezcla, que nos permitirá confirmar los valores de energía recomendados.

# ESTUDIO DE LA COMPACTIBILIDAD

Como ya se hiciera en estudios previos se procedió al estudio de la compactibilidad en las mezclas SMA11 y BBTM11B según apartado 7.2 de la Norma UNE-EN 12697-10 teniendo como referencia la densidad máxima (para el cálculo del % de contenido de huecos) la establecida en el apartado de

definición y selección de la mezcla bituminosa. Se calcularon los parámetros de la ecuación descrita en la norma para un número de giros igual o superior a 20 para cada una de las probetas fabricadas por cada laboratorio, realizándose posteriormente la media de cada serie. Se realizó también una corrección de las curvas obtenidas directamente de los equipos atendiendo a la medida final de altura tomada por el laboratorio.

A continuación se muestran los resultados obtenidos:

Tabla 18: Compactibilidad mezclas SMA11 y BBTM11B.

| Laboratorio | SMA  | <b>A11</b> | BBTI | M11B |
|-------------|------|------------|------|------|
|             | k    | v(1)       | k    | v(1) |
| 1           | 3.85 | 24.4       | 3.86 | 24.2 |
| 2           | 3.24 | 21.7       | 3.24 | 30.6 |
| 3           | 3.33 | 23.6       | 2.95 | 28.5 |
| 4           | 3.19 | 20.6       | 2.94 | 27.0 |
| 5           | 3.04 | 23.9       | 2.44 | 34.8 |
| 6           | 3.38 | 20.2       | 2.94 | 26.4 |
| 7           | 3.21 | 21.7       | 2.76 | 28.5 |
| 8           | 3.19 | 21.7       | 2.82 | 27.3 |
| 9           | 3.63 | 22.5       | 3.37 | 32.1 |
| 10          | 3.33 | 19.9       | 2.71 | 25.7 |
| 11          | 3.72 | 24.5       | 2.46 | 28.3 |
| 12          | 2.99 | 18.7       | 2.77 | 26.9 |
| 13          | 3.77 | 23.6       | 3.18 | 28.0 |
| 14          | 2.93 | 20.5       | 2.35 | 28.1 |
| Promedio    | 3.33 | 22.0       | 2.91 | 28.3 |

Con estos promedios se calcularon los giros en los que se alcanzaría el porcentaje de huecos equivalente a la compactación por impacto a 50 golpes según la ecuación descrita en norma:

$$v(ng) = v(1) - (K * ln ng)$$

donde:

- v(ng) contenido de huecos para un número de giros, ng, expresado en tanto por ciento.
- ng es el número de giros.

Los valores obtenidos fueron:

Tabla 19: Giros teóricos mezclas SMA11 y BBTM11B.

| Golpes | SMA11<br>(Giros teóricos) | BBTM11B<br>(Giros teóricos) |
|--------|---------------------------|-----------------------------|
| 50     | 116                       | 166                         |

# ANALISIS ESTADÍSTICO DE LOS RESULTADOS

El análisis estadístico de resultados se realizó según las normas UNE 82009-2 y UNE 82009-6 (equivalentes a ISO 5725-2 e ISO 5725-6 respectivamente), referentes al método básico para la determinación de la repetibilidad (resultados de ensayos independientes realizados con el mismo método de ensayo, sobre muestras idénticas en el mismo laboratorio, por el mismo operario utilizando el mismo equipo en un corto periodo de tiempo) y reproducibilidad (resultados de ensayos independientes realizados con el mismo método de ensayo, sobre muestras idénticas en laboratorios diferentes, operarios distintos utilizando un equipo diferente) de un método de medición normalizado. Este análisis de los resultados se inicia con un estudio estadístico de los datos aportados por todos los participantes, para determinar si existen valores aberrantes y, en su caso, eliminarlos.

Los ensayos que se han utilizado para la detección de resultados numéricos aberrantes han sido:

- Ensayo de Cochran. Permite detectar laboratorios que presentan resultados con excesiva variabilidad con respecto del conjunto.
- Ensayo de Grubbs (simple y doble). Permite detectar laboratorios que presentan resultados que difieren excesivamente de la media.

El criterio para tratar los resultados de los tests es el siguiente:

- Si el estadístico del ensayo es menor o igual al 5
   de su valor crítico (o mayor o igual en el caso de Grubbs doble), el valor verificado es aceptado como correcto.
- Si el estadístico del ensayo es mayor o igual al 5 % de su valor crítico (o menor o igual en el caso de Grubbs doble), y menor o igual al 1 % de su valor crítico (o mayor o igual en el caso de Grubbs doble), el valor verificado es considerado anómalo, pero no se elimina para la estimación de la media general y las varianzas.

• Si el estadístico del ensayo es mayor o igual al 1 % de su valor crítico (o menor o igual en el caso de Grubbs doble, el valor verificado es considerado estadísticamente incompatible, y se elimina para la estimación de la media general y las varianzas.

Con los valores considerados aceptables se calculan las varianzas de reproducibilidad inter-laboratorios y la reproducibilidad total asociada al método. Los cálculos utilizados son los descritos en la UNE-EN 82009-2.

El estudio estadístico se ha llevado a cabo sobre los siguientes ensayos:

Densidad geométrica y densidad superficie saturada seca obtenida por compactación por impacto y por compactación mediante giratoria para la energía de referencia para las mezclas SMA y AC16S.

Densidad geométrica obtenida mediante la compactación por impacto y por la giratoria para la energía de referencia para la mezcla BBTM 11B.

De la aplicación del test de Cochran y Grubbs se extraen los siguientes resultados:

- Mezcla AC16S: El laboratorio 7 presenta valores anómalos en la densidad geométrica por impacto y en la giratoria a 100 giros. Así mismo este laboratorio presenta resultados aberrantes en las densidades superficie saturada seca tanto por impacto como por giratoria. Éstos últimos han sido eliminados para el análisis posterior de la precisión del ensayo.
- Mezcla BBTM 11B, se ha detectado un valor anómalo correspondiente al laboratorio 5 en cuanto a la densidad geométrica por impacto.
- Mezcla SMA 11: Se ha detectado un valor aberrante correspondiente al laboratorio 9 en la medida de la densidad geométrica mediante la compactación giratoria a 100 giros que ha sido eliminado en el posterior análisis de la precisión del ensayo.

En la siguiente tabla se presentan los valores de la desviación estándar de repetibilidad y reproducibilidad para las distintas densidades y para cada tipo de mezcla obtenidos en este ejercicio.

Tabla 20: Resultados de desviación estándar de repetibilidad y reproducibilidad AC16S.

#### Mezcla AC16

|                            | Sr   | S <sub>R</sub> |
|----------------------------|------|----------------|
| Densidad geométrica (75x)  | 9.9  | 32             |
| Densidad geométrica (100g) | 12.5 | 26.14          |
| Densidad sss (75x)         | 5.12 | 22.4           |
| Densidad sss (100g)        | 6.4  | 17.5           |

Tabla 21: Resultados de desviación estándar de repetibilidad y reproducibilidad SMA11.

#### Mezcla SMA11

|                            | Sr   | S <sub>R</sub> |
|----------------------------|------|----------------|
| Densidad geométrica (50x)  | 17.8 | 47.08          |
| Densidad geométrica (100g) | 17.7 | 26.2           |
| Densidad sss (50x)         | 8.07 | 31.1           |
| Densidad sss (100g)        | 9.2  | 15.1           |

Tabla 22: Resultados de desviación estándar de repetibilidad y reproducibilidad BBTM11B.

### Mezcla BBTM11B

|                            | Sr | SR |
|----------------------------|----|----|
| Densidad geométrica (50x)  | 15 | 77 |
| Densidad geométrica (160g) | 30 | 59 |

# **COMPROBACIÓN DE RESULTADOS EN CONTROL DE PRODUCCIÓN EN DIFERENTES INSTALACIONES DE FABRICACIÓN**

Se han realizado comprobaciones con mezclas tomadas en el control de producción en fábrica en varias instalaciones para verificar las energías de compactación obtenidas en los estudios efectuados para las mezclas tipo AC. Los resultados obtenidos son los siguientes:

Mezclas tipo AC 16 fabricadas con impacto a 75 golpes y con giratoria a 100 giros, con molde de 100 milímetros y con distinto tipo de ligante.

En los siguientes gráficos vienen representados los resultados obtenidos durante el control de producción en fábrica para la densidad por superficie seca saturada con los distintos métodos de compactación y la diferencia existente entre los mismos.

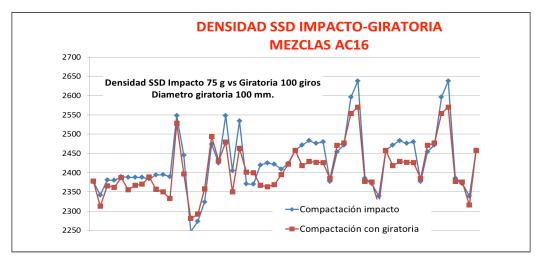



Gráfico 10. Densidad impacto-giratoria en CPF de la mezcla AC16.

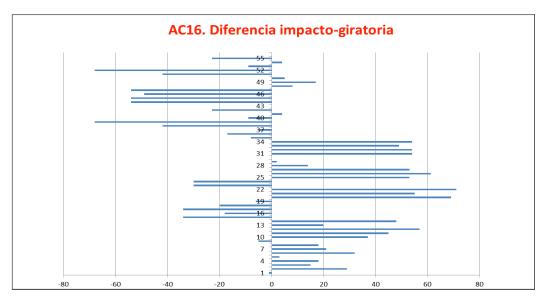



Gráfico 11. Diferencias densidad impacto-giratoria en CPF de la mezcla AC16.

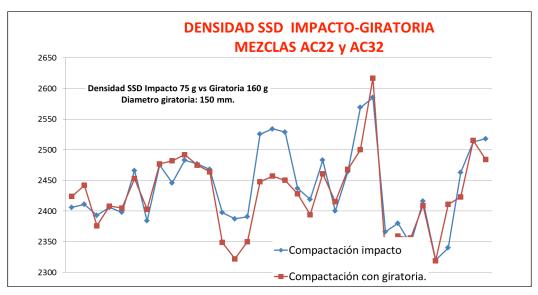



Gráfico 12. Densidad impacto-giratoria en CPF de las mezclas AC22 y AC32.

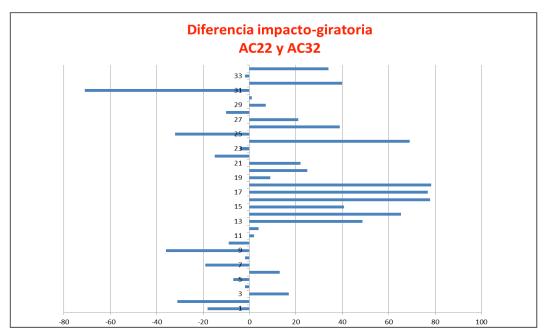



Gráfico 13. Diferencias densidad impacto-giratoria en CPF de las mezclas AC22 y AC32.

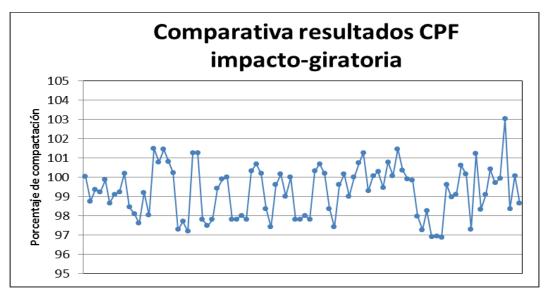



Gráfico 14. Comparativa en porcentaje entre impacto y giratoria en el CPF en varias instalaciones.

Para las mezclas tipo AC 22 y AC32 fabricadas con impacto a 75 golpes y con giratoria a 160 giros, con molde de 150 milímetros y distinto tipo de ligante. En ambos casos los valores representados en los gráficos 12 y 13 corresponden a la densidad por superficie seca saturada en kg/m³.

Si se toma para cada caso el 100 % de compactación el valor de referencia obtenido con el compactador de impacto, la mayor parte de los valores obtenidos con el compactador giratorio en todos los ensayos aportados en el estudio (90) corresponden a un porcentaje de compactación entre un 97 y 102%, tal y como puede comprobarse en el gráfico 14.

# **CONCLUSIONES**

Las conclusiones obtenidas por los participantes en este trabajo son las siguientes:

 Como en las anteriores fases, el principal objetivo del trabajo es determinar la energía equivalente con la máquina giratoria para alcanzar la densidad que se obtiene con el equipo de impacto con 50 golpes para las mezclas tipo BBTM11B y SMA11. En este cuadro se muestran los resultados para todos los distintos tipos de mezclas estudiadas en las cuatro fases del trabajo:

Tabla 23: Cuadro resumen de las energías recomendadas para las mezclas AC16, AC22, AC32, SMA11 y BBTM11B.

| MEZCLAS | Giros<br>equivalente a 75 golpes | Giros<br>equivalentes a 50 golpes |
|---------|----------------------------------|-----------------------------------|
| AC32    | 160                              | 80                                |
| AC22    | 160                              | 100                               |
| AC16    | 100                              | 80                                |
| BBTM11B |                                  | 100                               |
| SMA11   |                                  | 160                               |

NOTA: En las mezclas tipo AC16, BBTM11 y SMA11 se ha empleado un molde de 100 milímetros de diámetro mientras que para las mezclas tipo AC22 y AC32 se ha utilizado un molde de 150 milímetros de diámetro.

En todos los casos se ha tenido en cuenta los niveles permitidos en la tabla C.1 de la Norma UNE-EN 13108-20.

- Es necesario continuar realizando el trabajo de control de producción en planta para analizar un mayor número de resultados. Hasta la fecha los valores obtenidos en los controles efectuados parecen confirmar los valores de energía recomendados para estos tipos de mezclas.
- Para los tres tipos de mezclas ensayadas, AC16, SMA11 y BBTM11B, se obtienen resultados de reproducibilidad mejores para las probetas fabricadas con el compactador giratorio, es decir menor dispersión (menores valores de SR), de igual forma que los resultados obtenidos en los anteriores estudios para las mezclas tipo AC16S, AC16D, AC22 y AC32. Esta dispersión es también menor para los valores de la densidad por superficie saturada seca en lugar de la densidad geométrica.
- Los resultados obtenidos en los ensayos de tracción indirecta para ambos tipos de mezclas no aportan una información clara sobre su tendencia entre ambos sistemas de compactación. Si se

compara el resultado obtenido de las probetas fabricadas con el compactador de impacto con el resultado obtenido en las probetas fabricadas con el compactador giratorio, en el caso de la mezcla SMA11 los resultados con el compactador giratorio son superiores a los de impacto mientras que para la mezcla BBTM11B los resultados obtenidos con el compactador giratorio son inferiores a los que se han obtenido con el compactador de impacto.

• Los resultados obtenidos en el estudio de la compactibilidad de las mezclas SMA11 y BBTM11B confirman los valores de energía recomendados en el trabajo.

El estudio sobre la compactación giratoria continúa dentro de un Grupo de trabajo coordinado en ALEAS (Agrupación de Laboratorios de Asefma).

#### **AGRADECIMIENTOS**

La realización de un trabajo de esta magnitud requiere de la colaboración de un numeroso grupo de participantes para que los resultados puedan considerarse estadísticamente relevantes.

Por ello los autores de esta comunicación quieren agradecer a los numerosos integrantes de los laboratorios de las organizaciones participantes (ACCIONA, ASEFMA, CIESM-INTEVIA, CAMPEZO, DITECPESA, EIFFAGE -Laboratorios de Madrid y Sevilla-, ELSAN, INTROMAC, LOS SERRANO, MECACISA, PAVASAL, PROAS, REPSOL, SACYR y SORIGUE) el ingente esfuerzo realizado.

### **BIBLIOGRAFÍA**

V Jornada Nacional de Asefma (2010) Comunicación libre: Estudio de un ensayo de anillo de las características de una mezcla bituminosa a partir de la compactación de probetas por impacto y por giratoria.

VI Jornada Nacional de Asefma (2011) Comunicación libre: Estudio comparativo de la metodología de compactación giratoria-impacto, parte II.



VII Jornada Nacional de Asefma (2012) Comunicación libre: Estudio comparativo de la metodología de compactación giratoria-impacto, parte II.

Norma UNE-EN 12697-6. Determinación de la densidad aparente de probetas bituminosas por el método hidrostático.

Norma UNE-EN 12697-23. Determinación de la resistencia a la tracción indirecta de probetas bituminosas.

Norma UNE-EN 12697-30. Preparación de probetas con el compactador de impacto.

Norma UNE-EN 12697-31. Preparación de probetas con el compactador giratorio.